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Comment on “Diffusion in biased turbulence”
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Recently Vladet al. [Phys. Rev. E63, 066304(2001)] applied the method of decorrelation trajectories to
the transport of tracers in stochastic velocity fields with constant drift, and found that the average Lagrangian
velocity is smaller than the Eulerian average. As this contradicts a theoretical result due to Limley
Mécanigue de la Turbulengénternational Conference of the CNRS, Marseille, 196&ntre National de la
Recherche Scientifique, Paris, 19h2wo-dimensional numerical simulations are performed to confirm that
the average Lagrangian and Eulerian velocities are in fact equal when the velocity field is divergence free.
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In a recent papefl], Vlad et al. considered transport by | agrangian and Eulerian average velocit{®=V,. Here
incompressiblédivergence-freestochastic velocity fields in - we briefly review Lumley’s argument, following the presen-
the presence of a constant average drift. Results for the Laation in Ref.[3]. First, Taylor expansion of the Lagrangian
grangian correlations, diffusion coefficents, and average Layelocity in time leads to a formal series whose coefficients
grangian velocity were derived using the method of decorreare all Eulerian quantities, and so to the immediate conclu-
lation trajectories. In particular, it was claimed that thesjon that Eulerian homogeneity implies Lagrangian homoge-
average Lagrangian velocity may differ from the Eulerianneity. We then choose a volunkeof points and consider the
averageV for large Kubo numbers whe, is significantly  integral
smaller than the rms velocity of fluctuations. This result is
contrary to a theorem of Lumldy2] (see also Ref.3]) which
states that the one-point, one-time probability distributions fRV(a,t)da.
for the Eulerian and Lagrangian velocities are identical for
homogeneous turbulence in an incompressible fluid. In thigecause of incompressibility, the transform of variables from
Comment we report on numerical simulations of transport ing to x has unit Jacobian, and so
two-dimensional incompressible Gaussian fields which con-

firm Lumley’s result and conclude that the average Lagrang-
ian velocity equals the Eulerian averayg, contradicting fRV(a,t)da: fR,[V(X(t)’t)’LVd]dX’ ©)
Ref.[1].
The dimensionless Langevin equation for transport ofyhereR’ is the volume filled at time by the fluid which
tracers igsee Ref[1], Eq.(13)] filled volumeR at timet,. As the fieldsv andV are both
dx(t) _homogen.eous, the mean values of the functions under the
L =v(x(t),)+ Vq, (1)  integral signs do not depend on the coordinates. How&vVer,
dt is a random volume which depends upd(x,t) and so av-
eraging under the integral signs is not immediately permit-
X(0)=0, (2)  ted. This difficulty is circumvented by the consideration of a

» . sufficiently large initial volumeR—in this manner, the rela-
whergx(t) denotes .the tracer position at tiherhe random _ tive error of replacingR’ by R on the right-hand side of Eq.
velocity field v(x,t) is assumed to be homogeneous and in<3) can be made arbitrarily small. Averaging both sides of the

compressibledivergence freg V-v=0, and to have mean yegiting approximate equation and dividing Byields the
zero,(v)=0. Thus the average Eulerian velocity is equal t0gesjred equality

the constant vecto¥y. The Lagrangian velocity is the

velocity experienced by the tracers as they move along the (V(a,1))=(v(x,1) +Vg)=Vy.
random trajectories generated by E() starting from
X(tg) =a: In other words, the average Lagrangian velo¢i) equals
the Eulerian averag¥,. Note that this theorem holds for
V(a,t) =v(x(t),t)+Vy, both frozen and time-dependent velocities, is independent of
the number of space dimensions, and that the condition of
x(t)=a+ ftV(a,t’)dt’. incompressibility(zero divergenceof the random field is a
to crucial element in the proof.

In order to demonstrate the application of Lumley’s theo-
The average Lagrangian velocity may differ from the Eule-rem to fields similiar to those employed in Rgf], and also
rian average if, for example, trapping effects are dominantto highlight the importance of the incompressibility condi-
However, the conditions of homogeneity and incompressibiltion, we perform numerical simulations of transport in fro-
ity were shown by Lumley2] to result in the equality of the zen, two-dimensional, Gaussian velocity fieldss|. The av-
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FIG. 1. Correlation function of the random velocity field as a FIG. 3. Average Lagrangian velocity as a function of tifteg
function of separation distanae=|r|. Symbols are the results of scalg. The dashed line represents the Eulerian avexage0.1.

averaging oveN, =16 000 realizations; the dashed line denotes the ) o ) )
exact result exp¢r?/2). The 95% confidence intervals are also Gaussian-distributed components of zero mean and unit vari-

shown. ance. The amplitude vectozs andy,, are then calculated by
setting
erage Eulerian velocity 4 is taken to be in the, direction, K
and the zero-mean random fields generated in each real- —a.— Mk
N Zn= 8y
ization by a sum of the form Kn-Kp
b,k
N n n
1 Yn=bn— " Kn, (@)
V0= 3 20008k X) +Ya sinlly ). T keka

so thatz,-k,=Yy,-k,=0, and therefor& - v=0. In the limit
N—oo, the velocity field is Gaussian and homogeneous, with

The components of each random vedtqrare chosen from Eulerlan correlatioficompare Eq(27) of Ref. [1]]

independent Gaussian distributions of zero mean and unit
variance. To ensure incompressibility, we first generate ran-

2
dom vectorsa, and b, which also have independent E(r)=(v(x)-v(x+r)>=ex;{ _ r)
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FIG. 2. Histogram ofx; tracer positions at tim¢=50. The FIG. 4. Average Lagrangian velocity as a function of tifley
average Eulerian velocity 4=0.1 and the average displacement scalg in a compressible velocity field. The dashed line represents
in the x; direction is 5.0 0.17. the Eulerian averag¥,=0.1.
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wherer =|r|. This exact result is plotted for comparison with from the Eulerian average predicted by Vlatal. [1], see
the numerical correlation in Fig. 1. The error bars denote théheir Figs. Za) and 3.

95% confidence intervals. The number of modes is taken to Figure 4 shows the dramatic effect of easing the incom-
be N=100 in all our experiments, with ensemble averagegpressibility constraint, so that the velocity field is no longer

calculated oveN, =16 000 realizations. divergence free. We replace E@4) by z,=a,/\2, yn
Having generated the random velocity fielgk) in each  =by/\2, so the conditiorlV-v=0 no longer holds. Pro-
realization, the ordinary differential equation ceeding as before, we find that the average Lagrangian ve-

locity decreases from the Eulerian average velocity towards
zero as time increases. Contrary to the situation in an incom-
dx(t) pressible velocity field, trapping of tracers at points of zero
T:V(X(t)HVd velocity is now possible, see Fig. 4.1 | of Rg6] and Ref.
[7]. The number of trapped tracers increases with time, thus
leading to the slowing of the mean Lagrangian velocity ex-
with initial condition x(0)=0 is solved using standard nu- hibited in Fig. 4. Indeed, we find that less than 4% of tracers
merical methods, and the tracer positioifs) and Lagrang- havex;-velocity magnitude of above 0.01 by tinte= 100,
ian velocitiesv(x(t))+V, are stored at various times up to despite the Eulerian average beiig=0.1. _ _
t=100. The average Eulerian velocity is taken to be/ In summary, we have s_hown _that numerical S|m_ulat|_on of
=0.1 for definiteness. The effects of trapping are evident irfracer transport in two-dimensional frozen velocity fields
the histogram of the tracer displacements inxhalirection ~ 2drees with the theoretical results of Lumleyd contradicts
at timet=50 (Fig. 2), with a large number of tracers remain- Ref.[1]), i.e., the Lagrangian and Eulerian average velocities

ing close to the origin, but significant numbers escaping e equal, provided the velocity is homogeneous and diver-

ensure that the average displacement(xg(50))=5.07 gence free.

+0.17 at the 95% con_fide_nce level. Th(_% average ngrangian Support from Enterprise Ireland’s International Collabora-
velocity in thex; direction is plotted against log in Fig. 3. tion scheme, and from the Institute of Nonlinear Science and
We note thatin accordance with Lumley’s theorgrthe La-  the Faculty of Arts Research Fund, University College Cork
grangian average does not display the significant deviationis gratefully acknowledged.
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