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Comment on ‘‘Diffusion in biased turbulence’’
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~Received 3 December 2001; published 18 September 2002!

Recently Vladet al. @Phys. Rev. E.63, 066304~2001!# applied the method of decorrelation trajectories to
the transport of tracers in stochastic velocity fields with constant drift, and found that the average Lagrangian
velocity is smaller than the Eulerian average. As this contradicts a theoretical result due to Lumley@in
Mécanigue de la Turbulence, International Conference of the CNRS, Marseille, 1961~Centre National de la
Recherche Scientifique, Paris, 1962!#, two-dimensional numerical simulations are performed to confirm that
the average Lagrangian and Eulerian velocities are in fact equal when the velocity field is divergence free.
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In a recent paper@1#, Vlad et al. considered transport b
incompressible~divergence-free! stochastic velocity fields in
the presence of a constant average drift. Results for the
grangian correlations, diffusion coefficents, and average
grangian velocity were derived using the method of deco
lation trajectories. In particular, it was claimed that t
average Lagrangian velocity may differ from the Euleri
averageVd for large Kubo numbers whenVd is significantly
smaller than the rms velocity of fluctuations. This result
contrary to a theorem of Lumley@2# ~see also Ref.@3#! which
states that the one-point, one-time probability distributio
for the Eulerian and Lagrangian velocities are identical
homogeneous turbulence in an incompressible fluid. In
Comment we report on numerical simulations of transpor
two-dimensional incompressible Gaussian fields which c
firm Lumley’s result and conclude that the average Lagra
ian velocity equals the Eulerian averageVd , contradicting
Ref. @1#.

The dimensionless Langevin equation for transport
tracers is@see Ref.@1#, Eq. ~13!#

dx~ t !

dt
5v„x~ t !,t…1Vd , ~1!

x~0!50, ~2!

wherex(t) denotes the tracer position at timet. The random
velocity field v(x,t) is assumed to be homogeneous and
compressible~divergence free!, “•v50, and to have mean
zero,^v&50. Thus the average Eulerian velocity is equal
the constant vectorVd . The Lagrangian velocityV is the
velocity experienced by the tracers as they move along
random trajectories generated by Eq.~1! starting from
x(t0)5a:

V~a,t !5v„x~ t !,t…1Vd ,

x~ t !5a1E
t0

t

V~a,t8!dt8.

The average Lagrangian velocity may differ from the Eu
rian average if, for example, trapping effects are domina
However, the conditions of homogeneity and incompressi
ity were shown by Lumley@2# to result in the equality of the
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Lagrangian and Eulerian average velocities^V&5Vd . Here
we briefly review Lumley’s argument, following the prese
tation in Ref.@3#. First, Taylor expansion of the Lagrangia
velocity in time leads to a formal series whose coefficie
are all Eulerian quantities, and so to the immediate conc
sion that Eulerian homogeneity implies Lagrangian homo
neity. We then choose a volumeR of points and consider the
integral

E
R
V~a,t !da.

Because of incompressibility, the transform of variables fro
a to x has unit Jacobian, and so

E
R
V~a,t !da5E

R8
@v„x~ t !,t…1Vd#dx, ~3!

whereR8 is the volume filled at timet by the fluid which
filled volume R at time t0. As the fieldsv and V are both
homogeneous, the mean values of the functions under
integral signs do not depend on the coordinates. HoweverR8
is a random volume which depends uponv(x,t) and so av-
eraging under the integral signs is not immediately perm
ted. This difficulty is circumvented by the consideration o
sufficiently large initial volumeR—in this manner, the rela-
tive error of replacingR8 by R on the right-hand side of Eq
~3! can be made arbitrarily small. Averaging both sides of
resulting approximate equation and dividing byR yields the
desired equality

^V~a,t !&5^v~x,t !1Vd&5Vd .

In other words, the average Lagrangian velocity^V& equals
the Eulerian averageVd . Note that this theorem holds fo
both frozen and time-dependent velocities, is independen
the number of space dimensions, and that the condition
incompressibility~zero divergence! of the random field is a
crucial element in the proof.

In order to demonstrate the application of Lumley’s the
rem to fields similiar to those employed in Ref.@1#, and also
to highlight the importance of the incompressibility cond
tion, we perform numerical simulations of transport in fr
zen, two-dimensional, Gaussian velocity fields@4,5#. The av-
©2002 The American Physical Society01-1
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erage Eulerian velocityVd is taken to be in thex1 direction,
and the zero-mean random fieldv is generated in each rea
ization by a sum of the form

v~x!5
1

AN
(
n51

N

zn cos~kn•x!1yn sin~kn•x!.

The components of each random vectorkn are chosen from
independent Gaussian distributions of zero mean and
variance. To ensure incompressibility, we first generate r
dom vectors an and bn which also have independen

FIG. 1. Correlation function of the random velocity field as
function of separation distancer 5ur u. Symbols are the results o
averaging overNr516 000 realizations; the dashed line denotes
exact result exp(2r2/2). The 95% confidence intervals are al
shown.

FIG. 2. Histogram ofx1 tracer positions at timet550. The
average Eulerian velocity isVd50.1 and the average displaceme
in the x1 direction is 5.0760.17.
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Gaussian-distributed components of zero mean and unit v
ance. The amplitude vectorszn andyn are then calculated by
setting

zn5an2
an•kn

kn•kn
kn ,

yn5bn2
bn•kn

kn•kn
kn , ~4!

so thatzn•kn5yn•kn50, and therefore“•v50. In the limit
N→`, the velocity field is Gaussian and homogeneous, w
Eulerian correlation@compare Eq.~27! of Ref. @1##

E~r !5^v~x!•v~x1r !&5expS 2
r 2

2 D ,

e

FIG. 3. Average Lagrangian velocity as a function of time~log
scale!. The dashed line represents the Eulerian averageVd50.1.

FIG. 4. Average Lagrangian velocity as a function of time~log
scale! in a compressible velocity field. The dashed line represe
the Eulerian averageVd50.1.
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wherer 5ur u. This exact result is plotted for comparison wi
the numerical correlation in Fig. 1. The error bars denote
95% confidence intervals. The number of modes is take
be N5100 in all our experiments, with ensemble averag
calculated overNr516 000 realizations.

Having generated the random velocity fieldv(x) in each
realization, the ordinary differential equation

dx~ t !

dt
5v„x~ t !…1Vd

with initial condition x(0)50 is solved using standard nu
merical methods, and the tracer positionsx(t) and Lagrang-
ian velocitiesv„x(t)…1Vd are stored at various times up
t5100. The average Eulerianx1 velocity is taken to beVd
50.1 for definiteness. The effects of trapping are eviden
the histogram of the tracer displacements in thex1 direction
at timet550 ~Fig. 2!, with a large number of tracers remain
ing close to the origin, but significant numbers escaping
ensure that the average displacement is^x1(50)&55.07
60.17 at the 95% confidence level. The average Lagran
velocity in thex1 direction is plotted against log10t in Fig. 3.
We note that~in accordance with Lumley’s theorem! the La-
grangian average does not display the significant deviat
ys
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from the Eulerian average predicted by Vladet al. @1#, see
their Figs. 2~a! and 3.

Figure 4 shows the dramatic effect of easing the inco
pressibility constraint, so that the velocity field is no long
divergence free. We replace Eq.~4! by zn5an /A2, yn

5bn /A2, so the condition“•v50 no longer holds. Pro-
ceeding as before, we find that the average Lagrangian
locity decreases from the Eulerian average velocity towa
zero as time increases. Contrary to the situation in an inc
pressible velocity field, trapping of tracers at points of ze
velocity is now possible, see Fig. 4.1 I of Ref.@6# and Ref.
@7#. The number of trapped tracers increases with time, t
leading to the slowing of the mean Lagrangian velocity e
hibited in Fig. 4. Indeed, we find that less than 4% of trac
havex1-velocity magnitude of above 0.01 by timet5100,
despite the Eulerian average beingVd50.1.

In summary, we have shown that numerical simulation
tracer transport in two-dimensional frozen velocity fiel
agrees with the theoretical results of Lumley~and contradicts
Ref. @1#!, i.e., the Lagrangian and Eulerian average velocit
are equal, provided the velocity is homogeneous and di
gence free.
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